Net Present Value

The net present value of the **net income** receivable from an investment is equivalent to the **capital value** of that investment and may be obtained from the formula:

NPV =
$$\sum_{i=1}^{n} \frac{CF_t}{(1+r)^t} = CF_0 + \frac{CF_1}{(1+i)} + \frac{CF_2}{(1+i)^2} + \frac{CF_3}{(1+i)^3} \dots + \frac{CF_n}{(1+i)^n}$$

Where: CF_t = the cash flow at time t CF_0 = the initial cash flow or outlay CF_1 , CF_2 , CF_3 , CF_n = net cash flows from the investment at periods 1, 2, 3, etc. or years 1, 2, 3, etc. up to the final period or year n i = discount rate or cost of capital n = number of periods of time (or years)

If NPV = 0, then i = the internal rate of return. In other words, NPV represents an 'absolute' measure of value, whereas IRR is a 'relative' rate of return.

Weighted Average Cost of Capital (WACC)

The average cost of capital (whether equity or debt), taking into account the relative proportions of each source of capital. For example, if \$1.5m is provided as equity capital on the basis of an expected dividend yield of 5%, and \$5m is provided as debt capital at an interest rate of 12%, the weighted average cost is: $[(1.5/6.5) \times 5\%] + [(5/6.5) \times 12\%] = 10.38\%$. A generalised formula for calculating the weighted cost of capital is:

$$k = \sum w_i k_i$$

Where: w_i is the weight of the *i*th type of capital and k_i is the cost of the *i*th component. If the firm has one class of debt, preference shares and equity, k would be found as:

$$k = w_b k_b + w_{ps} k_{ps} + w_s k_s$$

This latter equation can be expanded to encompass short-term debt, long-term debt, convertibles, etc. See also composite rate, gearing.